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Multiparticle Fractal Aggregation 

Richard F. V o s s  1 

Kinetic fractal aggregation in a particle bath where a fraction f of the sites are 
initiaily occupied is studied with d =  2 computer simulations. Independent 
particles diffusing to a fixed cluster produce an aggregate with fractat dimension 
D ~ 1.7 up to a correlation length ~(f). At larger lengths D ~ 2. ~(f) -+ o~ as 
f-~ 0. When the particles remain fixed but the cluster undergoes a rigid random 
walk D appears constant at larger scales but varies withf. D-~ 1.95 at Iargef 
and D-~ 1.7 asf-~ 0. In both cases, the aggregate size N(t) grows with time t as 
t y~f~. Aggregation on a surface by independently diffusing particles produces 
shapes reminiscent of electrochemical dendritic growth. The dependence of 
growth rate and geometry is studied as a function of particle concentration and 
sticking probability. 
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Many  growth or aggregation phenomenon result in fractal clusters (1'2) 

with power law correlations over wide ranges of length scales. Such 

correlations are reminiscent of those found in equilibrium phase t ransi t ions 

at the critical point. Much of the recent widespread interest in understanding 

the origins of  these correlations is based on the success of computer 
simulations (3-5) in reproducing the scale-invariant properties. In particular, a 
simple model has been presented ~3'4) for the aggregation process when the 
limiting step is diffusion to the growth sites. This model is based only on 

local constraints  (Brownian motion, connectivity to aggregate) yet it 

reproduces the long-range fractal behavior. This model and its variations 

have also stimulated theoretical treatments based on mean field ~6) and 
continuum~7=~) approximations and real space renormalization.(~~ 

The models presented here are a generalization of the singIe-particle 
diffusion-limited aggregation process. (3) In  that model, a single particle 
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would undergo a random walk until reaching the boundary of the aggregate 
or cluster. At this point it became part of the cluster and a new particle 
began its walk. The result for d = 2 was a ramified cluster with a two-point 
density correlation function that varies as 1/r n with r /~  0.3. Such aggregates 
are most conveniently characterized within the framework of Mandelbrot's 
fractal geometry ~z) by their fractal dimension D = d -  t/. In this case, the 
radius of gyration R is also related to N, the number of particles in the 
cluster, by N oc R D. 

In this paper, the specific effect of multiple particles on the resulting 
aggregate geometry is studied with d =  2 computer simulations. This 
modification results in a model more closely resembling actual growth 
situations and, moreover, enables a study of the growth rate vs. concen- 
tration. For both of the variations presented, aggregate growth occurs in a 
particle bath where a fraction f of the sites are initially occupied. The 
particles are mutually exclusive and only one particle can occupy a given 
site during each time step. 

The first variation consists of initially populating a fraction f of the 
available sites on a two-dimensional square lattice with mobile particles and 
starting a cluster "seed" at the origin. During a time step, each of the mobile 
particles is examined in random order. One of its neighbor sites is selected 
by chance as a possible next position. If unoccupied, the particle moves to 
this new site. If occupied, the particle remains fixed. If the new site borders 
the cluster, the particle and any of its neighbors also become part of the 
cluster. The simulation boundaries are held fixed at the initial concentrat ionf  
and the process is iterated while the cluster growth is recorded. 

Samples of the cluster grown by this multiparticle diffusive aggregation 
(MPDA) and its particle bath are shown in Fig. 1. Cluster sites are shown as 
solid black squares while the mobile particles are the surrounding smaller 
dots. Figure la shows a MPDA cluster of 5000 atoms grown in a concen- 
tration f = 0.05. A depletion layer with few mobile particles is clearly seen 
outside the cluster boundary. This cluster is extremely similar to those 
produced by the single-particle process. (~'4~ Figure lb, shows a MPDA 
cluster of 10000 atoms grown in a higher concentration f =  0.25. In this 
case, the cluster is much more compact and the surrounding depletion layer 
is very narrow. In these higher concentrations cluster growth is extremely 
rapid and in Fig. lb it is possible to see several mobile particles "trapped" 
within the growing cluster that have not yet become attached. 

The second variation also begins by occupying a fraction f of the 
available sites and positioning a cluster "seed" at the origin. In this case, 
however, the particles remain fixed while the growing cluster undergoes a 
random walk. At each time step, the cluster moves rigidly and without 
rotation by one lattice site in a random direction. Any particles neighboring 
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(a) f = 0.05 N = 5 0 0 0  M P D A  
. - . - .  - 

: - . .  [ ' ,  " , .  

{c )  f =0 .05  N = 4 1 2 1  C D A  

. " fZ" / 

(b)  f = 0 . 2 5  N = 1 0 0 0 0  M P D A  

(d) f = 0 , 2 5  N = 1 0 0 0 0  C D A  

Fig. 1. Samples of multiparticle diffusive aggregates. (a) and (b) simultaneous diffusion of 
particles in concentration f to fixed aggregate. (c) and (d) cluster diffusion through fixed 
particles of concentration fi 

the cluster become attached. As the cluster moves, it grows by consuming its 
environment. Growth stops when the cluster reaches the edge of the initial 
lattice. 

Samples of the result of  this cluster diffusion aggregation (CDA) are 
also shown in Fig. 1. Figure lc shows a CDA cluster of 4121 atoms grown 
in a concentration f =  0.05. The depleted area swept out by the cluster 
random walk is clearly seen. This cluster is also similar to those produced by 
the single-particle process. (3"4) Figure ld, shows a CDA cluster of 10000 
atoms grown in a higher concentration f =  0.25. As with Fig. lb the cluster 
is more compact at higher f .  Differences are, however, visible. The MPDA 
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clusters in Fig. la and lb are relatively symmetric about their origin, while 
the CDA clusters of Fig. lb and ld show much more variation at large 
scales. 

Multiple clusters have been simulated using both the MPDA and CDA 
processes at various f in the range 0.02 to 0.50 and with typical sizes N from 
20000 to 450000 atoms. As with percolation, ~11'~2) all of these clusters are 
ramified with a perimeter/area ratio that is a constant at large N. This ratio 
increases slightly as f increases. Although radius of gyration R (N) variations 
with N have been used to estimate the fractal dimension D for the clusters, 
the geometric differences at various f are most clearly seen in the two-point 
density correlation function g(R). Effectively R (N) averages the 
contributions only about the center of mass while g(R) averages over all 
points in the cluster. Here, g(R) is the probability that two points separated 
by a distance R are both part of the aggregate. Fractal, or scale-invariant, 
shapes are characterized by power law g(R) oc 1/R '7 up to length scales of 
order of the cluster radius. Two-dimensional fast Fourier transform (FFT) 
routines were used to estimate the two-dimensional spectral density of the 
aggregates and then to determine g(R). 

Figure 2 shows g(R) vs. R for six large clusters grown by multiple 
particles at different f diffusing to a fixed seed (MPDA). In all cases the 
rapid decrease in g(R) at R ~ 200 is due the finite cluster size. At low 
concentrations, f < 0.08, the g(R) for different f are indistinguishable and 
follow the simple power law indicated by the straight line g(R) oc 1/R '7 with 
I"/~- 0.28 in Fig. 2. This t/corresponds to a fractal dimension D = 2 - t / ~  1.7 
in agreement with previous single-particle aggregation simulations (3'4~ and 
R(N) variations. This correspondence is expected. At low f only one particle 
is effectively in the cluster neighborhood at one time. As the concentra t ionf  
is increased, g(R) follows the low-f limit at low R, then becomes approx- 
imately constant before falling off at the cluster radius. Thus, at larger f t h e  
aggregate properties are fractal or scaling only out to some effective 
correlation length ~(f). For length scales 2 such that ~ ( f ) <  2 < R the 
aggregate properties are roughly uniform with D ~ 2. This transition is 
visible in Fig. lb where the aggregate has a relatively uniform appearance 
over intermediate length scales. 

The inset in Fig. 2 shows ~(f)  as a function o f f  estimated from the 
g(R) transition from power law to constant. As f increases ~ ( f ) ~  0 while at 
Iow f ~ ( f ) ~  oo. The ~(f)  dependence shown is consistent with a functional 
dependence ~(f)  oc 1If 2 or ~(f)  oc exp[ - f l /2 ] .  The data are, however, insuf- 
ficient to distinguish between these two forms or other possibilities. 
Theoretical treatments that include a finite particle density also suggest the 
introduction of a new length corresponding to the maximum size for fractal 
behavior. A mean-field t6) approximation introduces a diffusion screening 
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Fig. 2. Two-point correlation function g(R) vs. R for multiple particles at different concen- 
trations f diffusing to a fixed cluster. Solid line shows limiting 1/R n behavior at low f. Inset 
shows how correlation length ~ varies with f. 

length varying as f - l ,  while a continuum approach (9) suggests a boundary 
layer varying as 1If ~ with 0-~ 1 as a new critical exponent. 

Figure 3 shows the measured g(R) for cluster diffusion through fixed 
particles (CDA) at various f .  Although there is some indication of an 
effective ~( f )  similar to Fig. 2 with ~(f)--* oo as f--* 0, the clusters do not 
become uniform on length scales >~(f) .  For R > ~, the observed g(R) 
follows a power law for all R up to the cluster radius. The solid lines in 
Fig. 3 show fits to the form g(R) oc 1/R n and the resulting r/ are tabulated. 
Once again, at low f the results are (as expected) consistent with the single 
particle simulations where D = 2 - - t l ~  1.7. In this case, however, the 
aggregates apparently remain fractal at larger scales up to their radius, while 
D appears to vary continuously with f .  This surprising fractal (as opposed to 
uniform) behavior is visible by comparing Fig. ld with lb. There is no scale 
at which the overall appearance of Fig. ld becomes uniform. These CDA 
simulations were performed with much larger clusters than the MPDA 
results in Fig. 2 to study the apparent variable D at largerR. Figure 3 
appears to be inconsistent with an interpretation of a slow crossover at all f 
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Two-point correlation function g(R) vs. R for rigid cluster diffusing through different 
concentrations f of fixed particles. Solid lines show fits to g(R)oc I/R ~. 

to uniform behavior. The theoretical models (6-9) that predict such behavior 
do not apply to the CDA process, and even larger simulations would b e  
necessary to ascertain if the apparent D persists as R--* o0. The fact that 
growth occurs in a concentration f does not necessarily constrain the 
aggregate large-R behavior to approach D = 2. A model where the only 
allowed growth sites are the two opposite ends of a rod would always 
produce a linear aggregate with D = 1 in any f .  Moreover, CDA, like all 
aggregation models, is a nonequilibrium time-varying process. The fractal 
dimension D characterizes a "snapshot" of the system at one instant in time. 
As shown in Fig. 1, at large f ,  an aggregate grows rapidly and g(R), which 
represents only those particles that are part of the aggregate, can decrease 
below f because of the voids "inside" the aggregate that still contain unat- 
tached particles. At a later time, the particles in these voids will have joined 
the aggregate, but other, larger voids will have appeared. 

At large f ,  these CDA aggregates seem to have a limiting D ~--- 1.95' and 
it is interesting to speculate on the connection with percolation. (11'12) For 
f--* Pc, the percolation threshold (Pc ~- 0.59 for four-neighbor connectivity 
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on a square lattice) the points connected to the original "seed" have a large 
extent even before the seed moves. Thus, as f ~  Pc the initial configuration 
becomes a large "seed" having the fractal dimension of the "infinite" 
percolation cluster u2> Dp~ -~ 1.9 and r/pc (for a single cluster) ~- 0.I .  Once the 
"seed" begins to move it rapidly sweeps up the remaining (initially unat- 
tached) particles and D ~ 1.95 while r / ~  r/pc/2 ~ 0.05. 

One of  the advantages of  these multiparticle simulations is the 
possibility of  getting information about  the growth of the aggregate in time. 
Figure 4a shows the measured aggregate growth N(t) vs. t ime t for M P D A  at 
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Fig. 4. Time dependence of cluster size N(t) for MPDA (a) and CDA (b) aggregates grown 
in different concentrations f. Solid lines show fits to N(t) oct ~s~. 
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various f .  Unit time corresponds to the possible movement of  each of  the 
mobile bath particles by one site. Figure 4b shows the same quantity for the 
cluster diffusion aggregation (CDA)  where the cluster undergoes one 
displacement in each time step. For  both processes, the observed aggregate 
size N(t) is best described as a power law t ~ where 7 is a function o f f .  In 
both cases y ( f ) ~  1 as f ~  0 while 7(f) increases rapidly as f ~  Pc the 
percolation threshold. For  d > / 3 ,  a spherically symmetric analytical 
model (13) predicts power law N(t) with an exponent that varies with d but 
not with f .  Extension of  this result (13) to two-dimensions predicts 7 = 1 with 
logarithmic corrections. Although the large f simulations in Fig. 4 were 
carried out to sizes many orders of  magnitude larger than ~(f) ,  there is no 
indication of  a crossover to a behavior independent o f f .  

B 

C 

: D 

Fig. 5. MPDA aggregate growth on a surface from a concentration f =  0.05. (a) sticking 
probability, s = 1.0; (b) s = 0.2; (c) s = 0.05; (d) s = 0,01. 
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There are, of course, many other variations of the fractal aggregation 
process. For example, the effect of varying the sticking probability s has 
been investigated for single-particle aggregation, t3~ It was found that s < 1 
introduces small-scale correlation. In addition, the obvious similarity of these 
fractal aggregates to actual dendrites suggests a study of growth from a 
surface (as opposed to an initial point as discussed above). For the specific 
case of electrochemical dendrites, ~14~ experiments typically study the growth 
rate of dendrite height for differing ionic solution concentrations and current 
density. The measurements themselves are somewhat subjective both in 
differentiating between "dendritic growth" and "rough surfaces" and in deter- 
mining a procedure for measuring dendritic height. There is an obvious 
correspondence between the electrolytic solution concentration and the 
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Fig .  6.  M P D A  a g g r e g a t e  g r o w t h  o n  a s u r f a c e  f r o m  a c o n c e n t r a t i o n  f =  0 . 2 0 .  ( a )  s t i c k i n g  

p r o b a b i l i t y ,  s = 1 .0 ;  (b )  s = 0 . 2 ;  ( c )  s = 0 . 0 5 ;  (d )  s = 0 . 0 1 .  
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simulation particle density f .  Similarly, one expects the ionic current density 
to be related to the sticking probability s: as the current density or s-~ 0 
there is no net attachment of particles to the surface, Figures 5-7 show 
samples of MPDA aggregation onto a horizontal surface for different 
varying f and s. The top of each sample was held at the initial concentration 
f while the aggregate grew from the bottom up. Periodic boundary conditions 
were used in the horizontal direction. Figures 5-7 demonstrate that many of 
the qualitative features of electrolytic deposition (from "rough surface" to 
"dendrites") are readily found with the two-dimensional MPDA simulations 
by varying only f and s, 

The simulations provide a straightforward estimate of average surface 
height vs. time over many more orders of magnitude than the typical 

Fig. 7. 

D 

MPDA aggregate growth on a surface from a concentration f =  0.40, (a) sticking 
probability, s = 1.0; (b) s = 0.2; (c) s -- 0.05; (d) s = 0.01. 
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experiment. Figure 8 shows average surface height vs. time for simulations 
with differing f and s. For a wide variety of (but not all) conditions the 
average surface height varies approximately as t ~/~. A detailed comparison of 
these two-dimensional simulations with actual three-dimensional electrolytic 
growth experiments is underway, as) 

In summary, new multiparticle models of kinetic fractal aggregation 
have been studied with d = 2 computer simulations. Independent particles of 
initial concentration f diffusing to a fixed cluster produce an aggregate with 
fractal dimension D - -  1.7 up to a correlation length ~(f).  At larger lengths 
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the cluster becomes uniform and D ~ 2. ~ ( f )  ~ oo as f - ~  0. Fo r  a cluster 
undergoing rigid Brownian mot ion  through fixed part icles the aggregate 
appears  to have a var iable  fractal  d imension D ( f )  at larger scales. D --* 1.95 

at large f and D ~ 1.7 as f ~  0. F o r  both models,  the aggregate growth is 
descr ibed as N ( t )  oc t ~(f) at large t. ? ( f )  -* 1 as f - ~  0. Aggregat ion  on a 
surface by independent ly  diffusing part icles  produces  shapes reminiscent  of  
e lect rochemical  dendri t ic  growth. Changes in par t ic le  densi ty f and sticking 
probabi l i ty  s s imulate  observed electrochemical  var ia t ions in solut ion 
concentra t ion and current  density. The average rate dependence on f and s is 
studied. 
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